Based on a graduate course taught at Utrecht University, this book provides a short introduction to the theory of Foliations and Lie Groupoids to students who. Introduction to foliations and Lie groupoids, by I. Moerdijk and J. Mrcun, reference to the Frobenius theorem, one can define a foliation to be. This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between.

Author: | Daisida Tet |

Country: | Yemen |

Language: | English (Spanish) |

Genre: | Automotive |

Published (Last): | 11 November 2008 |

Pages: | 351 |

PDF File Size: | 7.79 Mb |

ePub File Size: | 12.9 Mb |

ISBN: | 822-1-29698-600-5 |

Downloads: | 67784 |

Price: | Free* [*Free Regsitration Required] |

Uploader: | Tushura |

Among other things, foliatios authors discuss to what extent Lie’s theory for Lie groups and Lie algebras holds in the more general context of groupoids and algebroids. The Molino structure theorem for foliations defined by nonsingular Maurer-Cartan forms is treated in Chapter 4. Mrcun No preview available – References and further reading. Account Options Sign in.

Introduction to Foliations and Lie Groupoids I.

### Review: Introduction to Foliations and Lie Groupoids | EMS

This is just a small book nicely covering principal notions of the theory of foliations and its relations to recently introduced notions of Loe groupoids and Lie algebroids. Chapter 3 contains the Haefliger theorem there are no analytic foliations of codimension 1 on S3 and the Novikov theorem concerning existence of compact leaves in a codimension 1 transversely oriented foliation of a compact three-dimensional manifold.

We develop the theory of compactness of maps between toposes, together with associated notions of separatedness. Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, while the theory of foliations has immediate applications to the Lie theory of groupoids and their infinitesimal algebroids.

Selected pages Title Page. A holonomy groupoid of a foliation is a basic example of so called Lie groupoids.

This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. Introduction to Foliations and Lie Groupoids This is just a small book nicely covering principal notions of the theory of foliations and its relations to recently introduced notions of Lie groupoids and Lie algebroids.

The book starts with a detailed presentation of the main classical untroduction in the theory of foliations then proceeds to Molino’s theory, Lie groupoids, constructing the holonomy groupoid of a foliation and finally Lie algebroids.

### Introduction to Foliations and Lie Groupoids – I. Moerdijk, J. Mrcun – Google Books

Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, while the theory of foliations has immediate applications to the Lie theory of groupoids and their infinitesimal algebroids. The book starts with a detailed presentation of the main classical theorems in the theory of folkations then proceeds to Molino’s theory, Lie groupoids, constructing the holonomy groupoid of a foliation and finally Lie algebroids.

Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, An important feature is the emphasis on the interplay between these foliatuons Based on the authors’ extensive teaching experience, this book contains numerous examples and exercises making it ideal for graduate students and their instructors.

Bloggat om Introduction to Foliations and Lie Groupoids. The book is based on course lecture notes and it still keeps its qualities and nice presentation.

Proper Maps of Toposes I Moerdijk We develop the theory of compactness of maps between toposes, together with associated notions of separatedness. After the first chapter, containing a definition of a foliation and main examples and constructions, the authors introduce the key notion of holonomy of a leaf, a definition of an orbifold and they prove the Reeb and the Thurston stability theorems. Among other things, the authors discuss to what extent Lie’s theory for Lie groups and Lie algebras holds in the more general context of groupoids and algebroids.

## Introduction to Foliations and Lie Groupoids

Introduction to Foliations and Lie Groupoids. Skip to main content. Cambridge University PressSep 18, – Mathematics.

Skickas inom vardagar. My library Help Advanced Book Search.

Based on the authors’ extensive teaching experience, this book contains numerous examples and exercises making it ideal for graduate students and their instructors. An important feature is the emphasis on the interplay between these concepts: This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids.

Cambridge University Press Amazon.